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Abstract
In the past several years it has become increasingly clear that connectivity or percola-

tion concepts play an important role in understanding the properties of these low-density

materials. The full exploitation of this important link between material properties and

connectivity has, until recently, been hampered by the-scarcity of reliable methods to han-

dle the complex connectivity problem and the lack of tractable models that retain the

essential physics. Substantial progress has been made and we have seen the beginning

of important applications of percolation to several materials problems such as elasticity,

nucleation, spinodal decomposition and diffusion in disordered alloys.
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INTRODUCTION

During the period of this grant our work has focused on three broad problems. The first

is the development of a cell position-space renormalization group approach for percolation

that has as its primary advantages conceptual simplicity and systematic improvability. The

basic idea of the method is to rescale occupation probabilities directly without any appeal

to renormalizing an underlying statistical mechanical model Hamiltonian. This rescaling

is carried out within a cell framework in which the sources of error inherent in this approx-

imation scheme are clearly identifiable as the surface-to-volume ratio of the cell. We were

thereby led to consider the large-cell limit, and for this purpose we developed a Monte

Carlo renormalization procedure. Due to the sharpness of the underlying probability dis-

tributions, extreme accuracy can be obtained when only 10' out of the possible 2250000

states of a 500 x 500 cell are sampled. Finally, in conjunction with finite-size scaling, the

sequence of results of finite-cell renormalizations can be extrapolated to the infinite-cell

limit. This method provides numerical accuracy that compares favorably with traditional

techniques. The paper describing this work appeared in the list of the 100 most frequently

cited physics papers of 1982. A second focus of our work has been the development of more

general percolation models. Some are motivated by attempts to explain experimental data

on diverse systems, such as dilute ferromagnets and gels. We have also considered models
which have inherent theoretical interest, and which also provide further insights into the

geometric structure of random systems. For example, we have studied various correlated

percolation models, anisotropic and directed percolation, and percolation in a continuum.

Our very recent work in directed percolation has shown that the interplay of concentration

and orientational degrees of freedom in a random system leads to new types of crit~cal

behavior. This may have important ramifications for transport in random systemi. such

as electron hopping conductivity in strong fields, where directionality constraivrr are im-

portant. A third direction of our work involves the development of a simple geometric

description for the structure of the "incipient" infinite cluster which forms at the perco-

lation threshold. This structure directly controls the properties of an physical problem

embedded on the infinite cluster; for example the flow of electrical current or the spread

of magnetic correlations. The primary difficulty in visualizing a geometric picture of the

percolating cluster is that no characteristic length scale exists-the cluster is self-similar on

all length scales. Nevertheless we have developed a very simple theory based on identifying

geometric quantities that unambiguously characterize Lhe structure of the incipient infinite
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cluster. Our theory successfully describes recent experiments on dilute ferromagnets and

provides further predictions amenable to experimental test.

A. Fractal Structure of Low Density Materials

Percolation is a model suitable to describe low density materials. Many properties of such

materials strongly depend on the structure of the incipient infinite network. For example,

the elastic modulus of polymer gels and vulcanized rubber, the electric resistance of a

random resistor network, the diffusion of a fluid in porous media, communication in a

network of connected stations, and order propagation in dilute ferromagnets all depend

strongly on the structure of the infinite cluster.

How can one characterize the structure of the incipient infinite cluster? Many attempts

have been made by introducing suitable models such as the links and nodes model (Skal

and Shklovskii 1975, de Gennes 1976) and more recently the Sierpinski gasket (Gefen et

al 1981). Although the models are rather simple and amenable to direct calculation, we

now realize that they fail to describe the right behavior (Stanley and Coniglio 1983).

Just below the percolation threshold pc, consider the typical cluster of linear dimension

(p - pc) - ' where vp is the connectedness length exponent. If we imagine that
each bond carries an unit electrical resistance and we apply a voltage between the two

extreme points i and j separated by a distance of order , the bonds will fall in two

categories (Stanley 1977): (i) dead ends that do not carry the current (yellow bonds) and

(ii) backbone bonds that do carry current. The backbone bonds are responsible for long

range connectivity. For example, they support a shear stress in a polymer gel or rubber.

The dead ends could be removed, thereby lowering the density of the material without

changing the macroscopic properties such as the elasticity or the electrical conductivity.

What is the structure of this fundamentally important backbone? Again there are two

categories of bonds. The links (red bonds) are such that if one is cut the backbone breaks' c
6

into two disconnected clusters. All other bonds (blue bonds) form blobs. We have made a

systematic study of the statistics of these bonds based on exact results, series expansion

and Monte Carlo simulations (Stanley and Coniglio 1983, Pike and Stanley 1981, Coniglio

1981,1982, Hong and Stanley 1983a). This analysis shows that all these bonds are critical El

L = number of red bonds -, l/P

LB = number of blue bonds - (1)

Ly = number of yellow bonds - d. toor
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Here df is the fractal dimensionality of the full incipient infinite cluster and df is the fractal

dimensionality of the backbone. Note that df = Yh, the critical exponents associated with

the "ghost field." If the backbone bonds were only made of cutting bonds as in the nodes

and links model, we would have LB = L and consequently df/vp = 1. Analytical results

show that this is true only for dimensionality d = 1 and 6. For intermediate values of d,

ds/vp > 1. The more dB/vp is larger than 1 the more relevant are the "blobs." Numerical

calculations show that dB/vp assumes its maximum values for d = 2. Based on the above

analysis, we have suggested that above p, the infinite cluster is made of nodes connected

by a quasi one-dimensional chain made of links and blobs. The blobs themselves are made

of chains made of links and blobs in a self similar way. We note that the number of

cutting bonds diverge with a superuniversal exponent 1 when Pc is approached from below

L - (Pc - p)-l. This is true in any dimension and for any lattice.

Critical Phenomena in Random Systems

Dilute ferromagnets have received much attention recently both experimentally and theo-

retically (Birgeneau et al 1976,1980, Cowley et al 1980, Stauffer 1975, Stanley et al 1976,

Lubensky 1977, Stephen and Grest 1977) because their comprehension is important for the

general understanding of many other disordered systems. Consider, for example, an Ising

model in which ferromagnetic bonds are randomly distributed with concentration p. If all

the bonds are present (p = 1), the pure Ising model is recovered. As p decreases, the av-

erage ferromagnetic interaction also decreases. As a consequence, the critical temperature

decreases and approaches zero at the percolation threshold Pc. Below this value, only finite

clusters of ferromagnetic bonds are present, and therefore no ferromagnetic order is possi-

ble. The special point Q(p = p, T = 0) is very intriguing as both connectivity and thermal

fluctuation become critical. As this point is approached along the path p - pc, T = 0 no

thermal fluctuations are present and the critical behavior is characterized by percolation

exponents.

Much more interesting is the case when Q is approached along the path T --- 0, p = pc.

The experiments show two different behaviors according to the symmetry of the Hamilto-

nian that describes the system under investigation. For 2- and 3-dimensional Ising systems

(di.crete symmetry) Vt = vp giving therefore a crossover exponent 0 = 1. While for a 2-

dimensional Heisenberg system (continuous symmetry) the most recent experimental data

give € = VT/vP = 1.48 ± 0.15. These data have been without a satisfactory explanation for

a long time. We have studied at Pc the thermal critical behavior of two classes of models:
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the q-state Potts model, which contains the Ising model as a particular case (q = 2), and

the n-vector model, which contains as a particular case the Heisenberg model for n = 3.

Discrete symmetry (Potts model). By applying an exact renormalization group pro-

cedure near T = 0 (Coniglio 1981), we have found that the thermal correlation length

exponent along direction p = pc, T -+ 0 is given by

ln L=n (2)

where l P- pcI- vp is the connectedness length and L is the number of red bonds in the

incipient infinite cluster. Using the result found previously, i.e., L - lp - p,1-' it follows

that VT = vp in agreement with the experimental data and e-expansion (Stephen and Grest

1977, Wallace and Young 1978). The quantity L plays the role of an effective 1-dimensional

length along which thermal information is transmitted. In fact the same renormalization

group applied to a 1-dimensional length of L steps gives the same eigenvalue at T = 0

and therefore the same critical behavior near T = 0. Physically only the singly connected

bonds contribute to L, because the spins in the blobs of multiply-connected bonds are

strongly correlated at low temperatures, and therefore do not offer any "resistance" to the

spread of thermal correlations.

Continuous symmetry (n-vector model with n > 1). Application of the same exact

renormalization procedure near T = 0 shows that the effective 1-dimensional length along

which thermal information is transmitted is given by the 1-dimensional resistance associ-

ated to the backbone LR. Note that now the blobs do contribute to this effective length.

The physical reason for this is that the spins in the blobs are not as strongly correlated as

in the q-state Potts model, because of the low energy excitations of the spin waves. As a

consequence, we find that VT = Vp/ZR where ZR is the critical exponent associated with the

divergence of the resistance. Using the numerical data for ZR we find good agreement with

the experimental data. In this way not only have we found numerical agreement with the

experimental data, but we also have related these numerical quantities to the geometrical

properties of the incipient infinite cluster.

B. Anisotropic Aspects of Low-Density Materials

Very recently, it has been recognized that anisotropy, or directionality constraints, can

play a fundamental role in influencing the properties of random media. Examples include

fluid flow in randomly porous media at high flow rates, strong-field hopping conduction

in doped semiconductors, formation of a gel in a flowing solvent, and composite materials
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consisting of anisotropic elements such as fibers or oriented polymers. As an initial step

in understanding the effect of directionality on random systems, we are carrying out a

research program on a variety of models in which anisotropy effects play a fundamental

role. One important example is directed percolation, a model in which directed bonds,

or diodes, of a specified orientation randomly occupy a lattice (Kertdsz and Vicsek 1980,

Obukhov 1980, Cardy and Sugar 1980, Dhar and Barma 1981, Kinzel and Yeomans 1981;

for reviews, see e.g., Kinzel 1983, Redner 1983). This simple model appears to capture

many of the intriguing physical phenomena found in the systems mentioned above. For

example, directed percolation may be used to describe the non-linear conductivity and

the phenomenon of negative resistance found in strong field hopping conduction processes

(B6ttger and Bryksin 1979, 1980, Van Lien and Shklovskii 1981).

Our work on directed percolation has also led us to introduce and study a more

general model which incorporates both non-directed bonds (resistors), and directed bonds

(diodes) of arbitrary orientation (Redner 1981, 1982a,b). The additional orientational

degrees of freedom of the diodes gives rise to richer network behavior than that found

in conventional percolation or in directed percolation. It should be stressed that the

directionality constraint of the diodes drastically alters the basic physical features of the

percolation models. Our recent work in this area represents some important first steps in

understanding the ramifications of these directionality constraints.

A mean-field theory for directed percolation was constructed in order to understand

the fundamental anisotropic nature of the transition (Redner 1982). The basic new idea

is that fluctuations in a Landau-Ginzburg expansion of the free energy are accounted for

by including both even and odd powers of the gradient. This stems from the fact that

a symmetry-breaking occurs because of the preferred direction defined by the bias of the

diodes. From this free energy, we find that correlations in the direction parallel to the ori-

entation of the diodes are much longer-ranged than correlations in the perpendicular direc-

tion. As the percolation threshold is approached from below, clusters become anisotropic

in shape with a parallel correlation length, C11, diverging as (p+ - p+ )-v', and a perpen-
dicular correlation length, ±, diverging as (p+ - p+o)-'-, with vii l vj. Accounting for

this anisotropy in the Ginzburg criterion, we find that d,, the upper critical dimension for

directed percolation, equals five, compared to dc = 6 for isotropic percolation.

We have also shown that ± does not behave as a true length under rescaling, but

rather as a length times an angle (Klein and Kinzel 1981, Klein 1982b). Specifically.
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11 and j. are related by _. = C119 where 9 is the opening angle of directed percolation

clusters. This relation between the correlation lengths has important implications for the

construction of a renormalization group treatment of this problem.

In addition, we have constructed a theory for directed percolation which is in the spirit

of the Flory treatment of excluded-volume effects for linear polymers (Redner and Coniglio

1982, Lubensky and Vannimenus 1982). It predicts the correct upper critical dimension of

d, = 5, and gives the analytic dimension-dependent expressions of /11 = (d + 9)/4(d + 2)

and fij = 7/4(d+ 2), where ill and Flj_ describe the divergence of the correlation lengths on

N, the average number of bonds in a cluster. The Flory values are remarkably accurate in

two and three dimensions where numerical data exists, and makes predictions for higher

dimensions which await numerical tests.

We have developed a cell PSRG approach which incorporates the directionality effects

of the diodes. For the square lattice, we obtain the phase diagram which reveals a wide

variety of geometrical behavior. There are two second-order surfaces emanating upward

from a central line to form a wedge-shaped region. Within this volume lies the positive

diode phase where percolation in only one direction can occur. An identical structure oc-

curs below the reflection symmetry plane so that the diagram is divided into four regions:

the positive diode, negative diode, resistor, and insulating phases. Here resistor and insu-

lator refer to isotropic percolation and no percolation, respectively. On the simple cubic

lattice, a qualitatively similar phase diagram is obtained. A number of novel percolation

transitions are predicted by our approach:

(i) Directed percolation. Directed percolation corresponds to the p+ - q (or p- - q)

axis of the phase diagram. As already mentioned, two independent diverging lengths, 11

and Ci_, are required to characterize cluster shapes. Above the threshold, percolation is

confined within a narrow cone whose opening angle 0 scales as C_L/ II. Because of the

anisotropy, novel PSRG approaches are required. We have developed such a PSRG in

order to study directed percolation quantitatively (Herrmann et al 1983, see also Zhang

and Yang 1984). These new approaches are an important first step in treating anisotropic

critical phenomena through the renormalization group.

(ii) "Reverse" percolation. This novel transition occurs as a lattice completely occu-

pied by one species of diode is gradually diluted by resistors. With no resistors present,

one quadrant of the lattice is "wetted" by a fluid source at the origin. As the concentration

of resistors increases, the angle of this percolating region increases from 90' to 1S0 , just
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below the transition, and approximately half the lattice is wetted. Above the transition,

an infinite "backflow" path forms and the entire lattice is wetted.

(iii) More general percolation transitions. Our network model also displays novel

percolation transitions in which two parameters, one related to the bond concentration,

and the other related to the average bond orientation, can drive a percolation transition.

One transition retains the character of the usual isotropic percolation threshold. This

transition occurs when the total concentration of bonds increases to a critical value, while

the average orientation of any diodes present remains random. One important example

that falls in this class is "random Manhattan" -a lattice completely occupied by randomly

oriented diodes. This network is obtained if all the one-way signs in midtown Manhattan

were randomized at every intersection. By the use of the PSRG and an exact analysis of

the pair-connectedness function, we have argued that random Manhattan is isomorphic to

pure bond percolation at its threshold. This result also holds for the intermediate situation

of a network containing resistors as well as randomly-oriented diodes.

A second independent transition occurs as the diode "polarization," h = p+ - p-, is

varied. As h --* 0, the critical point is approached from one of the diode phases, and length

of backflow paths opposite to the diode polarization diverges.

Finally, at the isotropic percolation threshold we have proved the equality between a

number of exponents which holds for all lattices. This result reflects a simple geometrical

relationship between the number of isotropic and directed "cutting" bonds in the network.

This insight is a first step in constructing an intuitive picture of the geometrical structure

of random resistor-diode networks.

Conduction Properties of Resistor-Diode Networks

We have investigated the conduction properties of electrical networks in which some of the

circuit elements may have an asymmetric current-voltage response. Such a situation should

describe certain features of strong-field hopping conductivity in doped semiconductors. As

an intial step in understanding these complicated systems, we have introduced and studied

simple idealized networks whose properties are dominated by directionality effects. An

example is a network containing "ohmic" diodes of a fixed spatial orientation. Such a circuit

element behaves as an ideal resistor under a forward-biased voltage, and is non-conducting

under back-biased conditions. Experimentally, this has been achieved in an approximate

way by a series combination of a real diode and resistor (Redner and Brooks 1982). We

have also extended our study to more general situations in which the conductivities of the
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asymmetric elements in the forward and reverse directions, o+ and a- respectively, may

be either infinite, finite, or zero.

(a) Mean-field theory

The mean-field limit for the directed conductivity exponent may be found by applying the

de Gennes-Skal-Shklovskii links and nodes model, which provides an idealized geometric

picture for the percolating cluster. For pure percolation, the infinite cluster can be repre-

sented by a regular array of nodes of mean separation , joined by links whose conductances

vanish as (p - pc)C, when p -- p, from above. The conductance of a d-dimensional network

of linear dimension L can then be obtained by superposing the (L/)d - 1 chains, each con-

taining L/ links. This leads to a network conductance that varies as Ld- 2 (p - pc)t, with
t ( + (d - 2v

For directed percolation, the node lattice becomes anisotropic, with spacings of 61,
and 6. respectively, parallel and perpendicular to the anisotropy axes of the system. This

modification leads to a directed conductivity exponent t+ = ¢+ + (d-1)v± -v11. Employing

the values (+ = 1, and v11 = 1, v_. = 1/2 valid for d'> d, = 5, we obtain t+ = 2, compared

to t = 3 for the mean-field limit of the random resistor network, valid at six dimensions and

above. The exponent inequality t+ < t indicates that the directed conductivity should have

a much sharper variation with bond concentration near the percolation threshold. This is

intuitively plausible since the long tortuous paths that cause a very small conductivity in

the random resistor network, cannot occur in directed percolation. This observation leads

to a number of experimental ramifications, most notably the phenomeno:n of negative

resistance in strong-field hopping conductivity (B6ttger and Bryksin 1982).

(b) Analog experiments

As a more direct approach to studying directed conductivity, we have performed analog

experiments on the directed network (Redner and Brooks 1982, see also Arora et al 1983).

At first sight, it does not appear possible to extract information about the directed con-

ductivity exponent because of the large jumps in the conductivity as a fun,';n of the

number of bonds cut. These jumps are strongly correlated with the size of the underlying

directed backbone, however, and we can use this information to obtain an estimate for t+.

The source of these jumps are the topological constraints of directed pecolation, where

the removal of a single bond disconnects a large portion of the network. In contrast, if

the backbone in this figure consisted only of resistors, removing the indicated bond in the
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figure, would entail the removal of only four additional bonds to obtain the new backbone.

The strong correlation between the backbone size and the conductivity shows that

the two quantities are nearly proportional. The directed backbone exponent 3' is a purely

geometrical quantity for which it is known that 0' = 2,3 exactly. When coupled with the

numerical estimate / = 0.28, we estimate t+ : 0.6.

(c) Computer simulations

In a network containing diodes, there is the possibility that some of the diodes are back-
biased, and hence do not contribute to the conductivity even though they may be part of

the geometrical backbone of the cluster. Consequently, new methods need to be developed

to first identify the subset of bonds which are forward-biased, and then determine the

conductivity.

We have developed a numerical iteration and relaxation method which accomplishes

this task (Redner and Mueller 1982). To explain the method, note that an obvious ex-

tension of relaxation is to allow the state of the network to change at each iteration step.

Back-biased diodes should turn off, while previously turned-off diodes should turn on again

if the voltage across them becomes forward biased. Thus the state of the network should
.float" during the calculation. This procedure leads to prohibitively slow convergence in

many cases, and an apparent limit cycle behavior in some pathological cases. The reason

for this oscillatory behavior stems from the potential for negative feedback between the

states of certain nearly balanced diodes.

To overcome this problem, we developed a more gradual relaxation method in which

we effectively smooth out the break in the I-V response of each diode at V = 0 by replacing

the response curve with a piecewise continuous function. With this method, oscillations are

greatly reduced, and much more rapid convergence to the correct conductivity is obtained.

To estimate the conductivity exponent, we have developed a novel anisotropic finite-

size scaling method. Due to the anisotropy of directed percolation, the linear dimensions

of the system parallel and perpendicular to the anisotropy, L11 and L± respectively, must

scale up according to L1/"1 - L'/v. Very approximately, if the width of the system

doubles, the length must triple. Accordingly, we study a sequence of lattices beginning

at a small size such as L± x L11 = 1 x 2, 1 x 1, or 2 x 1, and scaling up to 32 x 47S,

48 x 453, or 48 x 152 respectively. Only under these conditions will the conductivity scale

as L+II 1. Based on our Monte Carlo data obtained at the percolation threshold, we

estimate a directed conductivity exponent of t+ = 0.60 ± 0.10, in good agreement with the
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analog experiment.

(d) Position-space renormalization group (PSRG)

We have developed a cell PSRG approach for directed conductivity by rescaling both

the bond occupation probabilities and the bond conductivities. One advantage of the

PSRG treatment is that it can be extended straightforwardly to treat more general circuit

elements such as superconducting bonds and also more complicated geometries such as

randomly-oriented diodes. At present, we have considered an "oriented" resistor-diode

network, which contains resistors, vacancies, and one species of ohmic diodes (Redner

1982c).

Such a network has three phases, depending on whether the forward or reverse conduc-

tances, G+ and G_ respectively, are zero or non-zero. In the diode phase, G+ is non-zero,

and it vanishes according to the exponent t+ as the boundary with the non-conducting

phase is approached. On the other hand, in the resistor phase, both G+ and G_ are

non-zero, and only G_ vanishes as the boundary with the diode phase is approached. The

vanishing of G_ may be written as (6p) t - , where t- is a "reverse" conductivity exponent,

and 6p is the distance from the diode phase boundary. Finally, at the isotropic percolation

point, both G+ and G_ vanish, and we have a tricritical point with two independent con-

ductivity exponents. One is simply the isotropic conductivity exponent which describes

how G+ and G_ simultaneously vanish as the transition is approached from the resistor

phase. There is a second exponent which describes how G+ only vanishes as the transition

is approached from the diode phase. From a b = 2 rescaling we have calculated these

exponents, and in particular, our result for t+ is in good agreement with our numerical

approaches discussed above.

In addition, a similar PSRG calculation can be used to find the conductivity diver-

gence of an ohmic diode-superconducting diode mixture. The PSRG requires that the

parameter space be enlarged to describe the network self-consistently. From this approach

we predict a wide variety of network responses characterized by the interplay between

ohmic conductivity and superconductivity, and also directionality effects.

C. Transport in Low-Density Materials

How are the laws of physics for this new class of low-density materials discussed above?

For example, how are the conventional laws of diffusion and flow modified in a randomly

porous medium? This question has been of the highest practical importance for some time,
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yet it is only in very recent months that substantial progress has occurred.

The main idea is the recognition of two time scales, with the borderline depending

on the characteristic linear dimensions of the inhomogeneities in the randomly porous

material. For a conventional Euclidean system, there is only a single time scale. For any

value of the time t, Fick's law applies: the rms displacement of a particle 11 = (r2) 1/2

varies as t1 /2 . For a fractal structure, there are two time domains. If we wait long enough,

Fick's law will apply and p _ t1/2. However for short times the range of the diffusing

particles, p, is shorter than the characteristic length scale f characterizing the fractal.

In this time domain, Fick's law breaks down, and the rms displacement varies with time

according to a completely different power law, p , t2/d.

The parameter d, is called the fractal dimension of the random walk that the diffusing

particle undergoes in a porous material. The special case d = 2 corresponds to diffusion

in a non-porous medium. One remarkable discovery is that while d always has the value
of 2 for a non-porous medium [regardless of the dimension of the space, or other details],

for a porous medium d depends very strongly on d.

It is often customary to discard data taken at short times, since these data do not

obey Fick's law. Now we understand that these data follow a quite different behavior

which yields valuable information about the nature of the porous medium. It is therefore

important to re-analyze a wealth of data in light of this development, and to examine

carefully all the implications of this new law of diffusion and flow. In particular, we can

calculate the fraction of material "wetted" by the diffusion process, and we find here that

there is again a remarkable new law emerging for randomly porous media. Moreover,

we can elucidate the behavior of a randomly porous system in a velocity field. The flow

equations are also modified substantially by the fractal structure of porous media, for all

but the longest time scales.

In discussing transport in random media, another basic question is, "what happens

for high flow rates?" In this case, it appears that transport processes become anisotropic

in character. To be specific, consider placing a diffusing particle within a porous medium

in which fluid is flowing rapidly. In this case, the particle will drift along the field, while

performing Brownian motion transverse to it. We propose to explore the quantitative laws

that describe this anisotropic transport process. In particular, for a homogeneous medium,

the displacement along the flow will vary linearly with time, while the transverse diffusion
will be governed by Fick's law. However, just as for isotropic problems, the randomness
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modifies these scaling laws in a fundamental way.

In addition to the aforementioned anisotropy, strong flow fields also suggest the ex-

istence of non-linear effects. It is only for weak flows that transport can be described by

linear response theories. For strong flows, collective particle motions become important,

and flow rates depend non-linearly on biasing fields. In particular, negative differential

resistance has been observed in doped semiconductors for an appropriate range of doping

and field strengths. As mentioned in Sec. B above, these interesting effects can be de-

scribed simply in terms of a discrete random network model in which transport is mediated

by one-way bonds or diodes.

In order t,- test the theoretical ideas of diffusion on randomly porous structures, it

is necessary to be able to characterize the morphology of the medium accurately. As

mentioned earlier, the characteristic size scale f determines an important crossover effect.

For p > f, Fick's law holds, while for short times, Fick's law breaks down. One medium in

which to observe the breakdown of Fick's law and measure transport properties in the short

time regime is a polymer gel. By varying the composition of the monomeric units of various

functionalities that comprise the gel, it is possible to vary the characteristic mesh size of

the gel over a wide range. This mesh size plays the role of f in the diffusion measurements.

Furthermore, Professor R. Bansil here can measure the mesh size quite accurately by using

macromolecules of known molecular weight and size and studying the permeability of these

macromolecules in the gel. Other techniques to measure mesh size such as small angle light

scattering will also be considered. Thus by performing tracer diffusion experiments on gels

with varying mesh sizes, we propose to test the theoretical ideas of diffusion in random

media. It is also possible to study the diffusion of polystyrene microspheres of known size

in a medium which is undergoing gelation so that the characteristic length f is changing

with time. In this way one can study the crossover from diffusion in a homogeneous solution

to diffusion in a fractal.

We have preliminary results that contribute to our confidence that meaningful progress

can be achieved. Many of these results revolve around the discovery of Alexander and Or-

bach (1983) that the parameter dw introduced above to characterize diffusion in a randomly

porous media is directly proportional to the fractal dimension df of the material,

3
dw = 3df. (3)

We have concentrated our initial efforts on two main questions:
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1. Is the Alezander-Orbach conjecture exact or only approzimate? In an effort to

do this, we have introduced a function G(p, N), which is the number of growth sites of a

percolation cluster after N steps of the walk. The cluster is imagined to be generated as

the walker moves about, by flipping a coin each time the walker considers the possibility

of visiting a new site of the lattice; if the coin comes up heads then the walker moves

to that site while if the coin comes up tails then the walker treats that site as blocked

"forever." The coin is weighted to come up heads with probability p, and growth sites

are those unblocked sites that are neighbors of visited sites. It appears that the function

G(p, N) plays the role of the "order parameter" in the problem of diffusion in porous media

(Coniglio et al, to be published). In particular, G(p, N) approaches zero as p -- pc from
above. Exactly at pc G(pc, N) may be written as a sum of independent random variables for

the case of the Cayley tree, from which the Alexander-Orbach relation follows rigorously

(Leyvraz and Stanley 1983). We propose a thorough and careful investigation of the

function G(p, N) and the modifications in the Cayley tree argument that would be needed

to justify the Alexander-Orbach conjecture for general d-dimensional Euclidean lattices. It

is of the greatest importance to learn if the Alexander-Orbach conjecture is exact or only

approximate. Arguments based on epsilon expansions suggesting that it fails just below six

dimensions have been criticized (Coniglio 1983), and increasingly the numerical evidence

suggests that it may hold (to at least 2-3%) for all d. Of course, it is possible that it is

"like the Flory theory" and holds for some values of d and not others, so we propose a

careful Monte Carlo study of d-dimensional percolation using extremely large system sizes

and extremely long random walks. Such a program has been initiated independently by
the Toulouse group but we are certain that we can obtain more accurate numbers since our

own computer resources are quite immense (for example, we have succeeded in simulating

percolation clusters of up to 17 billion sites!).

2. To what class of fractals does the Alezander-Orbach conjecture apply? Th( above
remarks concern the percolation fractal, a model of randomly porous media just at the

threshold of conduction. There are many other low-density materials of great current in-

terest. Once such example is the model of colloids called diffusion-limited aggregation.

proposed by Witten and Sander (1981). In this model, the fractal is created in an irre-

versible fashion by allowing particles to diffuse in from a large distance and to stick to the

growing aggregate whenever they touch it. The resulting Witten-Sander aggregates are

large, wispy and highly ramified, with a fractal dimension that depends strongly on d.
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Recently we have initiated an extensive study of diffusion on Witten-Sander fractals

(Meakin and Stanley 1983). Our preliminary results for d = 2,3 suggest that (4) holds

to an accuracy of at least 10%. We are currently increasing the accuracy, as well as

extending these studies to all dimensions. In order to increase the accuracy, we have

begun using a clever idea of Havlin (1983, unpublished). Normally, computer simulations

are characterized by two statistical averages: first one averages over many fractals, and

second one averages over many walks on each fractal. However the second average can be

eliminated! Specifically, we can now enumerate ezactly the probabilistic features of the

random walk on the fractal by calculating analytically the probability that the end point

of the walk is at position r after N, steps. We find a dramatic increase in the accuracy

using this method, and propose to apply it to a wide range of low-density structures in

addition to Witten-Sander aggregates.

We have also begun to study the question of whether the Alexander-Orbach conjecture

applies to a completely different class of phenomena, diffusive annihilation. Here one

studies a system of particles that are free to diffuse at random in a continuum, but if two

particles touch then they annihilate. One monitors the surviving density of particles as a

function of time, and finds that the decrease is not exponential but rather via a long-time

power law whose exponent is df/dw (Meakin and Stanley 1984, Kang and Redner 1984).

Preliminary simulations in d = 2,3 show that (3) is obeyed quite accurately. These results

show that (3) is far more general than first imagined.

The remarkable generality of (3) thus motivates one to wonder if there are any systems

for which it does not apply. There do seem to be such systems. These include non-random

geometric fractals such as the Sierpinski gasket and "Havlin" carpet, as well as a most

interesting and relevant fractal: the percolation backbone. We have been able to show

rigorously (Stanley and Coniglio 1984) that

d- df =d - d, (4)

where the bars denote the backbone. Moreover, we have found that all numerical evidence

is consistent with the possibility that for the backbone (3) is replaced by a relation involving

the exponent characterizing the resistance to flow of fluid at the critical point.

Thus we are left with a most puzzling physics problem: (3) applies to some fractal

materials and not to others. How can one predict in advance of actual calculations whether

it will apply? I.e., what are the features of a fractal that cause it to obey (3)? One possible

answer to this question has been suggested recently (Leyvraz and Stanley 1983), namely
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that homogeneous fractals obey (3) while non-homogeneous fractals do not. By homoge-

neous we mean that there are no bottlenecks that hinder the diffusion. More precisely,

for a homogeneous fractal the number of elements of a set of sites that totally surrounds

a fractal scales as df - 1. In contrast, nonhomogeneous fractals such as the Sierpinski

gasket and Havlin carpet have boundary sets with exceptionally dense boundaries (hence

the term nonhomogeneous). We propose to consider other possible categorizations in an

effort to find the best one.

In summary, the Alexander-Orbach discovery, (3), has far-reaching implications for

our understanding of transport in randomly porous materials [among which is that dynamic

critical exponents are related to static exponents-e.g., the electrical conductivity exponent

t is given by t/z = d-2+ df. Accordingly, we propose to bring to bear on this problem all

methods of statistical mechanics, such as renormalization group, Monte Carlo simulation,

and exact enumeration. Very recently we have begun to consider transport by mechanisms

other than diffusion. One such is the transport occurring on a superconducting network,

where we have succeeded in deriving a relation between the transport exponent s/v and

the fractal dimension, analogous to that quoted above for the exponent t (Coniglio and

Stanley 1984).

D. Non-Equilibrium Properties of Low-Density Materials

Properties of materials depend strongly on the process of formation as well as chemical

composition. In addition, several classes of useful materials are not in the equilibrium

state, but are in a glass or metastable state. For these reasons we have begun to study

non-equilibrium properties of materials.

There exists a substantial body of research demonstrating that percolation concepts

are essential for understanding phenomena such as nucleation (Klein and Unger 1983),

spinodal decomposition (Binder 1983), and glasses (Grest and Cohen 1983). In particular,

the problems of continuum percolation (where there is no underlying lattice structure) and

correlated percolation (where the percolating elements interact) play an essential role. In

this section we discuss our previous and proposed work in these areas and indicate their

relevance to non-equilibrium processes such as nucleation as well as to other practical

problems such as fuel cells.

1. Continuum percolation

Some of the areas on which percolation theory has a substantial impact include design
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of liquid electrolyte fuel cells, secondary and tertiary oil recovery, properties of polymeric

materials and effect of impurities on metallic alloys. In a substantial fraction of these areas

the problem of percolation in a continuum, as opposed to percolation on lattice structures,

contains the essential physics. For this reason we have an ongoing program involving

computer simulation, renormalization group and rigorous results in which we are studying

continuum percolation and its application to various practical problems. In the following

we describe several of these projects in some detail, outlining the progress that has been

made. In the projects below various types of percolation will be described (e.g., correlated

and uncorrelated continuum percolation) and several methods will be outlined. The one

unifying factor is that in all of the projects the objects whose connectivity properties are

being studied are free to move throughout d dimensional space and are not constrained to

be on a fixed regular lattice.

(a) Computer simulations and Monte Carlo renormalization group

An essential problem in percolation is "what effect does the lattice have on the underlying

connectivity properties?" That is, "what aspects of the vast amount of information known

about lattice systems can be applied to the continuum?" One aspect of this question is the

problem of whether lattice and continuum percolation have the same critical exponents.

To investigate this problem we have performed Monte Carlo simulations (Gawlinski and

Stanley 1981) and Monte Carlo renormalization group studies (Gawlinski and Redner 1983)

of non-interacting squares and squares that have an additional hard core repulsion. Our

results indicate that for such systems critical exponents remain unchanged from the values

obtained in lattice models.

Realistic systems, however, have attractive forces between molecules. There is ev-

idence (see next section) that near a phase transition, critical percolation behavior is

strongly modified. We are currently investigating this effect in continuum percolation.

Other questions, which we will investigate with Monte Carlo techniques in continuum

systems, are

[1] The structure of the percolating network.

[21 The size distribution of clusters.

[31 The relationship between cluster properties and current flow in disordered media and

also fluid flow in randomly porous media.

The answers to the above questions will provide a basis for investigating structural and

electronic properties of porous low-density materials.

Final Report-ARO Contract DAAG-29-84-K-0136 Page 17



(b) Potts model formulation

Numerical methods have so far provided the only insights into continuum percolation.

Theoretical investigations are hampered by the complexity of continuum systems compared

to lattice models. We began a promising approach based on a major result of Kastaleyn and

Fortuin (1969) who demonstrated that the quantities of interest in lattice percolation, a

problem that considers connectivity can be obtained by solving for the thermal properties

of a spin model, the s-state Potts model. The advantage of this breakthrough is that

methods such as renormalization group developed for lattice thermal problems could now

be applied to lattice percolation problems.

We have generalized this mapping from thermal problems to connectivity problems

to include continuum models (Klein 1982a). This mapping has made techniques available

for continuum percolation which have been developed to solve continuum fluid problems.

Several projects have exploited these insights. These include:

[1] We have used this "Potts model" formalism to derive hierarchies of integral equations

for the connectivity functions (Klein and Stell 19xx). These functions play the role

in percolation that the distribution function play in the theory of fluids. With these

hierarchies we can derive, again in analogy to fluid theory, approximate integral equa-

tions that will describe the connectivity properties in continuum percolation over a
wide range of densities and correlation parameters.

[21 We have developed a method of solving linear integral equations with renormalization

group techniques (Klein 1983). This method is being applied to some of the heirarchies

and approximate integral equations mentioned above.

[31 The model described above is applicable to the problem of percolation of spheres. This

is necessary for understanding problems such as electron flow in fuel cell matricies.

For the problem of gaseous diffusion, electrolyte transport in fuel cells or oil recovery

the problem one needs to understand is percolation of the voids, the spaces between

the spheres. We are studying ways to adapt our model to this important problem.

2. Correlated percolation

Although random percolation, either on a lattice or in the continuum, has important

applications most of the systems occuring in nature have important correlations. In certain

cases, such as systems near phase transitions, the interaction or correlation is such an

essential part of the physics that random models are irrelevant or misleading. During the

past few years we have developed many correlated percolation models that have been useful
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in describing phenomena such as critical behavior in Ising and Potts models, nucleation in

deeply quenched metastable states and anomalous behavior of water. Below we describe

our progress in developing models for the above phenomena, various methods we have

developed to solve these models and outline our present and future projects.

(a) Correlated percolation near the critical point. Although short-ranged correlations

have very little effect on connectivity properties at the percolation threshold, the situation

is markedly different at thermal phase transitions (Klein et al 1978, Coniglio and Klein

1980, Coniglio and Lubensky 1980, Tuthill and Klein 1982,1983). At thermal phase transi-

tions such as critical points the correlation length becomes infinite and percolation critical

exponents become modified by the thermal fluctuations. This phenomenon has been ex-

tensively studied in ferromagnetic Ising models (Klein et al 1978, Coniglio and Klein 1980,

Coniglio and Lubensky 1980, Jan et al 1982, Weinrib and Halperin 1983, Benzoni and
Cardy 1983). Results on the Bethe lattice (Coniglio et al 1977,1979,1982), series analy-

sis (Sykes and Gaunt 1976), and Monte Carlo simulations (Stauffer 1981, Heermann and

Stauffer 1981, Ottavi 1981, Roussenq et al 1982, Kert6sz et al 1983) are available. In addi-

tion, investigations were also made of antiferromagnetic Ising models (Amitrano et al 1983)

and the Potts model (Coniglio and Peruggi 1982). From these extensive investigations the
picture that emerges is that in the neighborhood of critical points percolation transitions

can not only be modified but that a mathematical mapping exists between percolation

and and various thermal phase transitions. This mapping allows one to identify thermal

fluctuations with percolation clusters so that concepts such as the fractal dimension (Man-
delbrot 1977) can be applied to thermal problems. It has also led to an improved definition

of droplets in metastable states (see discussion below). Although a great deal has been

understood over the past five years, several important questions need to be answered.

Nucleation
The standard or classical theory of nucleation assumes that the metastable phase (e.g., a
supercooled gas) decays into the stable phase (e.g., liquid) due to the occurence of large

enough droplets of the stable phase which occur in the metastable background. These

droplets are assumed to be compact; that is, the fractal dimension of the droplet df is

assumed to be equal to the dimension of space (i.e., df = 3 for experiments). Therefore the
volume of the droplet is proportional to r and its surface to r -1 . Computer simulations

(Stauffer et al 1982) of nearest-neighbor Ising models have tested the classical theory far

from the critical point and found data consistent with the theory. For Ising models with
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longer range interactions, however, computer simulations (Heermann et al 1982, Heermann

and Klein 1982) and theory (Klein 1981, Klein and Unger 1983) have shown that the

nucleating droplets are not compact but are ramified and the surface of the droplet is

proportional to its volume. This is also true near the critical point (Heermann et al 1983).
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